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What is artificial intelligence (AI) and machine 
learning (ML)?
• AI: methods of using computers to learn, reason, and carry out tasks that 

are generally considered to require human intelligence
• Play games, identify objects in images, design experiments, etc.

• ML: methods of learning patterns in systems and making predictions 
using data without explicit human direction
• Types of Learning:

• Supervised Learning
• Unsupervised Learning
• Reinforcement Learning

• Both of these definitions are very fluid: 
• The boundaries of what is AI and ML in science and industry vary 
• No concrete expert consensus on definition
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Supervised, Unsupervised and Reinforcement Learning

• Do you have a collection of data with labels/values and have 
interest in predicting the label/value for data outside of this set?
• Yes: Supervised

• Predicting cross section as a function of energy
• Classifying an observed particle as a neutron or gamma in scintillator

• No: Unsupervised
• Grouping together time series values that look similar to find abnormal behavior
• Learning distribution of images to generate realistic synthetics

• No, but can take actions, collect data, and update based on feedback: 
Reinforcement

• Learning to policy for playing Go or StarCraft by playing many games and learning 
what works.

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization



Two Main Forms of Supervised Learning
• Regression:

• Predicting a continuous-valued output as a function of a set of input features
• One use is supervised learning to build emulators of expensive computer models

• Classification:
• Predicting qualitative class label as a function of a set of input features
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Common Supervised Learning Methods
• Deep Neural Networks

• More on the next slide
• Gaussian Processes

• Bayesian prior on a function space
• Defined through mean and covariance functions
• Function space defined by covariance function

• Can allow for infinite basis regression and quantification of 
uncertainty in predictions

• Flexible and accurate for small to medium data problems
• Uncertainty most valuable for small data problems

• Random Forests
• Ensemble method 
• Flexible, fast, and accurate for medium to large data problems
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What are Deep Neural Networks?

• Complex tool for (mostly) supervised 
learning
• Great for:

• HIGH dimensional input spaces
• HUGE amounts of data

• Ideally learning structure in the inputs that 
can then be used to predict the output
• Hierarchical, automatic feature learning

• Stack of linear combinations of previous 
layer, fed through non-linear transfer 
function
• The structure of the layers is critical to 

application
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Reinforcement Learning (RL)

• Utilizing ML to learn through 
trial and error
• RL agent is able to take actions, 

receive feedback, and use ML to 
attempt to learn an optimal 
policy for decision-making

• Current successes in iterative 
games like Go and StarCraft
• But more broadly can think of 

action as “propose experimental 
design”, etc. 

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

Perform 
Action

Obtain 
Reward

Update 
Policy 
Model

Assess 
Current 

State

Perform 
Action

Obtain 
Reward

Update 
Policy 
Model

Assess 
Current 

State



Generative Modeling
• Method for generating ‘realistic’ 

synthetic data
• One approach is Generative 

Adversarial Networks (GAN)
• Build model to generate random 

synthetic data
• Train a model to discriminate

between real and generated data
• Iteratively improve generator to fool 

discriminator and improve 
discriminator

• Popular for synthetic image 
generation, but new applications 
are being aggressively investigated

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

https://pathmind.com/images/wiki/gan_schema.png



Transfer Learning
• Utilizing ML models trained on one 

application or data set, either in part 
or in whole, for use in another task
• Current work largely focused on 

fixing part of a neural network 
trained on one large set of data 
• The used with a task for which less 

data exists or the cost of training the 
full network would be prohibitive

• Takes advantage of intrinsic feature 
learning in early layers 
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ML Interpretability
• Understanding what drives the prediction/decisions made by ML 

models is critical for building trust in their use and can lead to 
insight for physics problems
• Underlying prediction/decision models is some quantitative 

function 
• Assessment of how dependent predictions are on the input features can 

communicate importance
• Local and global importance, individualized or holistic

• Close relation to sensitivity analysis in applied math and statistics
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Nuclear Data Pipeline
to

AI/ML Methods
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University of Tennessee
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Neutron scattering cross section measurements for 56Fe
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Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several
incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons
were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight
techniques. The deduced cross sections have been compared with previously reported data, predictions from
evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical
model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based
on the vibrational and soft-rotor models are found to describe the experimental (n,n0) and (n,n1) cross sections
well.

DOI: 10.1103/PhysRevC.95.064605

I. INTRODUCTION

Nuclear data play an important role in modeling future
generation nuclear-energy systems [1–3]. Advanced high-
temperature nuclear reactors, for example, are being designed
for efficient energy generation while addressing safety, waste,
and proliferation concerns. Several are under construction for
use in the burn-up of heavy element radioisotopes associated
with the large waste disposal pools from the operation of
conventional energy-producing reactors. Computer models
and simulations are used to predict the performance of these
reactors under operating conditions, including the effects of
severe irradiation on structural properties. These predictions
require a vast knowledge of accurate and precise nuclear data,
particularly cross sections from neutron-induced reactions.

Iron is one of the primary structural materials in many
nuclear energy production systems, making Fe neutron scat-
tering cross sections important input for neutron transport
and energy absorption calculations. Elemental iron has four
naturally occurring stable isotopes, with 91.75% abundant
56Fe the most significant. In the fast-neutron energy region,
the total cross sections for neutron-induced reactions on 56Fe
are dominated by elastic and inelastic scattering processes.
A number of studies of fast-neutron scattering from 56Fe
have been reported [4–12]. Despite these efforts, there are
still significant discrepancies among predictions from existing
evaluated data libraries, particularly for the inelastic scattering
processes [13]. Such discrepancies can be attributed to exper-
imental data that have large or nonexistent uncertainties, lack
of information on finite-size sample corrections, or inadequate
inelastic scattering data [14]. In addition, sensitivity studies on
important reactor quantities, such as criticality, require the re-
duction of neutron cross section uncertainties on actinides and
structural materials to meet the target accuracies for advanced
reactor designs [1–3]. Recent high-resolution measurements,

*ap.ramirez@uky.edu

performed using γ -ray spectroscopic techniques, have been
published to provide data with reduced uncertainties [15–17].

In this paper, we present new experimental neutron elastic
and inelastic scattering differential cross sections for 56Fe. The
experimental methods are discussed in Sec. II and analysis
procedures in Sec. III. Our results and their comparisons to
previously reported data, evaluation databases, and theoretical
calculations obtained from well-established nuclear reaction
codes are presented in Secs. IV and V.

II. EXPERIMENTAL METHODS

The 56Fe fast-neutron scattering cross sections were mea-
sured at the University of Kentucky Accelerator Laboratory
(UKAL). Monoenergetic bunched neutrons and time-of-flight
(TOF) techniques were used to determine the scattered neutron
energies. Neutrons were produced via the 3H(p,n)3He and
the 2H(d,n)3He reactions for energies En < 4.9 and En !
4.9 MeV, respectively. In these reactions, the projectile protons
or deuterons were accelerated using the UKAL 7-MV CN
Van de Graaff accelerator. The terminal pulsing system, which
features an rf-ion source, outputs pulsed beams at a repetition
rate of 1.875 MHz and bunched to a width of about 1 ns with
a klystron buncher.

The accelerated ions were then impinged upon a gas cell
that contained the tritium or deuterium gas typically at 1-atm
pressure. The 3-cm-long gas cell assembly consisted of a
tantalum-lined stainless steel cylinder with a 3.3-µm-thick
molybdenum entrance foil window. The energy spread of the
emerging neutrons from the gas cell is dictated primarily by
straggling of the incident ions in the entrance foil, energy losses
of the ions in the gas, and sample size effects. For illustration,
6-MeV outgoing neutrons at 0◦ produced from 2H(d,n)3He
reactions with 1 atm of deuterium gas have approximately a
170-keV energy spread, whereas 3-MeV neutrons produced
from 3H(p,n)3He reactions have about an 80-keV energy
spread.

2469-9985/2017/95(6)/064605(9) 064605-1 ©2017 American Physical Society
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TABLE III. Experimental and calculated angle-integrated cross
sections based on spherical (sph), vibrational (vib), and soft-rotor
(soft-rot) models for elastic, (n,n1), (n,n2), and (n,n3) neutron
scattering on 56Fe. Cross sections are in units of b.

En Channel Expt. TALYS TALYS CC-rot
(MeV) (this work) (sph) (vib) (soft-rot)

4.00 (n,n0) 2.48(17) 2.21 2.18 2.06
(n,n1) 0.455(20) 0.348 0.411 0.413
(n,n2) 0.129(8) 0.123 0.123 0.159
(n,n3) 0.175(8) 0.154 0.152 0.179

4.50 (n,n0) 2.41(15) 2.160 2.14 2.098
(n,n1) 0.317(17) 0.254 0.311 0.306
(n,n2) 0.108(8) 0.091 0.092 0.116
(n,n3) 0.125(8) 0.115 0.115 0.131

4.90 (n,n0) 2.29(15) 2.12 2.10 2.11
(n,n1) 0.284(37) 0.199 0.254 0.238
(n,n2) 0.100(9) 0.071 0.071 0.083

5.94 (n,n0) 2.13(21) 2.05 2.03 2.07
(n,n1) 0.205(22) 0.129 0.182 0.157
(n,n2) 0.064(9) 0.039 0.038 0.047

6.96 (n,n0) 1.94(13) 1.96 1.94 1.99
(n,n1) 0.132(11) 0.098 0.151 0.125
(n,n2) 0.030(5) 0.023 0.022 0.031

7.96 (n,n0) 1.92(13) 1.85 1.83 1.87
(n,n1) 0.126(10) 0.081 0.134 0.105

relation reducing significantly the number of optical potential
parameters [45]. Here, we adopted the parameters from
Ref. [43], which can be retrieved from the reference input
parameters library (RIPL-3) [46] with index number 614.
The parameters from Ref. [43] are assumed to be valid for
iron isotopes with mass numbers between 54 and 58 and
incident neutron energies between 1 keV and 250 MeV.
These parameters were used as input to the nuclear reaction
program EMPIRE [45] to calculate neutron elastic and inelastic
cross sections. The calculations include the code OPTMAN
[47] which incorporates level-coupling schemes based on a
non-axial soft-rotor model to account for the stretching of soft
nuclei by rotations.

The comparison between our data and the dispersive
coupled-channel calculation based on the soft-rotor model
from Ref. [43] at En = 6.96 and 7.96 MeV are shown in Fig. 6.
A tabulation of the calculated cross sections from different
model calculations is given in Table III. Only the data for En !
4 MeV are presented since these cross sections are shown to
vary smoothly with bombarding energy according to the ENDF
evaluations. All the models were able to describe the elastic
cross sections well within 10% for En ! 4.90 MeV. The (n,n1)
cross sections obtained from the coupled-channel formalism

using the optical potential parameters from Ref. [43] better
describe the data than the spherical optical model calculations,
although a noticeable underestimation is found for neutron
energies 4.90 and 5.94 MeV. For the (n,n2) and (n,n3) cross
sections, most of the theoretical values are found to be
smaller than the experimental ones. The (n,n2) and (n,n3)
cross sections from TALYS vibrational and spherical model
calculations are almost identical as both are calculated using
the DWBA.

VI. CONCLUSION

The angular distributions for neutron scattering from 56Fe
were measured at 15 incident neutron energies from 1.30 to
7.96 MeV. The neutron scattering cross sections deduced from
these data have been compared with values from evaluation
databases. Reasonable agreement has been observed for data
above 3.5 MeV, although our data tend to be closer to the cross
sections from the JEFF library. Our angle-integrated (n,n1)
cross sections, representing the dominant inelastic channel for
neutron energies of 5.94 and 7.96 MeV, are slightly higher
than those in the evaluations. This result does not support
the assertion of Wenner et al. [35] that the total inelastic
cross section from the ENDF database should be lower by at
least 20%.

We have also compared our experimental results with
predictions from theoretical calculations using TALYS with
default parameters and coupled-channel calculations based on
the vibrational model, as well as the EMPIRE nuclear reaction
code based on the soft-rotor model with optical model potential
parameters from Ref. [43]. In general, the calculations were
able to describe the present differential elastic scattering
cross sections well, particularly for neutron energies above
4.5 MeV. When the TALYS default were used to calculate
the (n,n1) cross sections through the DWBA method, the
predictions significantly underestimated the experimental data
for En > 3.5 MeV. The TALYS predictions can be improved by
employing the coupled-channel vibrational model but with
a 64% reduction in the imaginary surface potential depth.
Similarly, the EMPIRE calculations based on the soft-rotor
model were also found to describe the inelastic cross sections
well.

ACKNOWLEDGMENTS

The authors acknowledge the many contributions of H. E.
Baber to these measurements. This research was funded in
part by the U.S. DOE NNSA-SSAA under Grant No. DE-
NA0002931, U.S. DOE NEUP under Grant No. NU-12-KY-
UK-0201-05, U.S. NSF under Grant No. PHY-1305801, and
the Donald A. Cowan Physics Institute at UD.

[1] G. Palmiotti and M. Salvatores, J. Nucl. Sci. Technol., 48, 612
(2011).

[2] G. Rimpault, in Proceedings of the International Workshop on
Nuclear Data Needs for Generation IV Nuclear Energy Systems,

Belgium, 2005, edited by P. Rullhusen (World Scientific,
Singapore, 2006), pp. 18–31.

[3] G. Aliberti, G. Palmiotti, M. Salvatores, T. K. Kim, T. A. Taiwo,
I. Kodeli, E. Sartori, J. C. Bosq, and J. Tommasi, in Proceedings

064605-7Supervised 
Learning

Neural Networks

Gaussian Processes
Generative 
Modeling



Experiments
Compilations

Evaluations
Processing Validation Applications

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

Evaluation of Mean Values Evaluation of Uncertainty



Experiments
Compilations

Evaluations
Processing Validation Applications

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

Experiment Design Nuclear Data Validation



Experiments
Compilations

Evaluations
Processing Validation Applications

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

A change in absorption cross section of 35Cl resulted in 
2000 pcm change in BOL keff

Nuclear Data Impact on Application Surrogates in Applications Modeling



AI/ML for Nuclear Data

Experiments
Compilations

Evaluations
Processing Validation Applications

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

Part I: Prepared Remarks

Opening Plenary Tim Hallman Mike Grosskopf Vladimir Sobes

Nuclear Data Pipeline

Compilations / Experiments Amanda Lewis Shinjae Yoo Michelle Kuchera Questions / Discussion

Evaluations / Processing Leo Neufcourt Pedro Vicente Valdez Jutta Escher Questions / Discussion

Validation Denise Neudecker Jesson Hutchinson Questions / Discussion

Applications Nicholas Schunk Amy Lovell Questions / Discussion

Closing Plenary Guannan Zhang Questions / Discussion

Break

Part II: Moderated Discussion

Discussion Lead Kyle Wendt

Moderated Discussion All

Summary Session Organizers



Nuclear data application area
• Incomplete or incorrect data can lead to very precise and very inaccurate 

predictions
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Nuclear data application area
•Machine learning is dependent on standardized data that is 

quality-verified and well-characterized
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“EXFOR is a compilation of the author's original published experimental 
data. 

While the format allows the inclusion of data renormalized to up-to-date 
standard values… this task is normally left to data evaluators…” 

– Principles of EXFOR 



Future
• A new database is needed, parallel to (or included within) EXFOR 

for vetted, standardized, and possibly adjusted data sets
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Publication EXFOR Vetted Database

Authors

EXFOR Compilers

Evaluators,
Qualified Data Users

• Standardization is especially important, 
for both formats and uncertainties

• This work is already done by evaluators 
for evaluations and should be done for 
current ML projects using EXFOR

• Natural language processing and currently 
available ML data verification software 
can be utilized for large scale checks
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Nuclear data application area
• Diverse quality in experiments and simulations
• Collection errors in processing pipeline
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Nuclear data application area
• Adopted non-parametric transformation and alignments
• Visual layout analysis to suppress PDF processing
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Future
• Batch effect mitigation or removal tools to be used by AI/ML
• Such tools / algorithms could be AI/ML methods
• Developed such algorithms for material science and bio-medical domain

• A fully automated NLP pipeline with reviewer user interface

Experiments
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• NLP can not be 100% accuracy and 
requires human validation
• Intuitive user interface is required 

for expert validation
• Automation can significantly reduce 

manual data extraction burden
• Table and Figure extraction from PDF
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Nuclear data application area
• Fast track selection or event classification in “big data” detectors
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What has been done
• Convolutional Neural Networks

Evaluations
Processing Validation Applications



Experiments
Compilations

Future
• Current work:
• cycleGAN
• Pix2pix

• Can we improve classification using 
GAN data?
• Can we reproduce these results in 3D 

to better simulate realistic data?

Evaluations
Processing Validation Applications
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What type of problem can this solve?
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à Robust extrapolation of nuclear observables

Robust UQ

Probability of existence of neutron-rich nuclei
[L. N. et al, submitted (2020)]

[L. N. et al, Phys. Rev. Lett. 122 (2019)] 

Evaluation of systematic errors
[L. N. et al, Phys. Rev. C 98 (2018)]



How does the method work?
• Train Bayesian Gaussian Processes / Neural Network emulators on residuals

• Sample refined predictions from posterior distributions

• Combine models with Bayesian Model Averaging (BMA)
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[L. N. et al, Phys. Rev. C 101 (2020)]

GP outperforms NN



What is needed to use these tools?
• A set of experimental data

• Divided into training and testing set

• Bayesian models are meaningful even with little data

• A set of theoretical calculations for models of interest

• Computing cores for Monte-Carlo simulations

à conditional distributions of GP on large dataset require .(/) matrix inversions

à ~ 50 cores x 1 week per model

Supervised 

Learning

Generative 

Modeling

Reinforcement 

Learning

Neural Networks

Gaussian Processes

Deep Q Learning

Bayesian Optimization

[L. N. et al, Phys. Rev. C 98 (2018)]
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What type of problems can this solve? – DNN and GB
• MLPs compute the gradient with respect to every model parameter 

(coefficients) and it is used to perform a Gradient Descent step.
• GBM trains many weak learners to create a strong learner (ensemble method).
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Deep Q Learning

Bayesian Optimization

Aurelien Geron, 2019



How does this method work?

Supervised 
Learning

Generative 
Modeling

Reinforcement 
LearningGaussian Processes

Deep Q Learning

Bayesian Optimization

Experimental 
Data

Integral
Benchmark

ML Generated
Cross Sections

Feature
Extraction

Quality Metric
(Error)

Application Sensitivity 
Study

Complex Non-Linear
Model Fitting

Theory
Training Validation Testing

Stratified Splitting

Neural Networks



What is needed to use these tools? – Representative Data!

Supervised 
Learning

Generative 
Modeling

Reinforcement 
Learning

GBM

Gaussian Processes

Deep Q Learning

Bayesian Optimization

• Measurements of other isotopes in the 
same reaction channel and energy range 
enable a GBM ML model to make better 
predictions than traditional evaluation 
tools.
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Nuclear data application area
Evaluated and predicted cross sections are critical to national security, 
energy and astrophysics applications

• Reaction data must be evaluated for use in applications
• Central tool: Extended Hauser-Feshbach reaction framework
• Uses diverse mix of structure & reaction models

• Challenges for reaction evaluations
• Correlated reaction channels
• Correlations across isotopes
• No optimal combination of models
• No model uncertainties
• Need to sample models and large parameter spaces
• Data do not give unique constraints to disentangle inputs

• Additional challenges for predictions
• Lack of constraints
• Extrapolation of models

Experiments
Compilations

Evaluations
Processing Validation Applications

Evaluation of Neutron Reactions. . . NUCLEAR DATA SHEETS Phillip G. Young et al.

The various evaluations are reasonably consistent over
most of the 0-30 MeV energy interval, except for the
lower and higher energies.

14. 238U delayed neutron multiplicity and spectra

New delayed neutron multiplicities and decay con-
stants are included in the ENDF/B-VII evaluation. The
methodology followed for the evaluations is described in
Sec. II.B.5. The spectra for the delayed neutrons were
adopted from ENDF/B-VI.8.

15. Energy release from fission of 238U

Similar to our n+235U evaluation, the energy release
data from fission was modified on the basis of the new
Madland analysis [159]. That is, the average total fis-
sion product kinetic energy and the average total prompt
fission gamma-ray energy were taken from the Madland
analysis. The average total prompt fission neutron ki-
netic energy was obtained from our ENDF/B-VII evalu-
ated fission neutron spectra and prompt neutron nubar,
and the remaining smaller contributions from delayed
neutrons, gammas, betas, and neutrinos were carried
over from the ENDF/B-VI.8 evaluation. The Q-value
for the 238U(n,f) reaction was changed from 198.06 MeV
to 198.032 MeV to maintain consistency with these new
energy release values.

H. n+239U evaluation

1. 239U summary

No previous evaluation of n+239U reactions existed in
the ENDF/B, JEFF, or JENDL databases prior to the
issuing of our ENDF/B-VII evaluation. This evaluation
covers the energy range from 10−5 eV to 30 MeV. Some
key features of the evaluation are:

a The systematic analysis of uranium isotopes de-
scribed in Section II was utilized in obtaining all
n+239U cross sections.

b The isospin-dependent coupled-channel optical
model potential given in Table II [3] was used to
calculate the neutron total cross section, elastic and
inelastic scattering cross sections, elastic scattering
angular distributions, and reaction cross sections,
as well as transmission coefficients for the reaction
theory calculations.

c The surrogate data of Younes and Britt [232] were
utilized in our evaluation of the 239U(n,f) cross sec-
tion.

2. 239U resonance parameters

The ENDF/B-VII n+237U resonance parameters were
adopted for n + 239U at neutron energies below 10
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FIG. 85: Comparison of angle-integrated neutron emission
spectra calculated from evaluations with measurements of
Baba et al. and Matsuyama et al. at En=4.25, 6.10, 18.0
MeV.

keV. The resolved resonance parameters cover the en-
ergy range 10-5 to 102.5 eV; the unresolved resonance
parameters span the range 102.5 eV to 10 keV. The
resonance analysis was suitably joined with the present
smooth cross section analysis at 10 keV. As noted in Sec.
IV.F.2, deficiencies in the unresolved resonance region
need to be corrected in the next issue of ENDF/B-VII.
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FIG. 10: Measured and calculated 238U(n,2n) cross section
from threshold to 20 MeV.
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FIG. 11: Measured and calculated 238U(n,3n) cross section
from threshold to 20 MeV.
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FIG. 12: Measured and calculated 238U(n,γ) cross section
from 10 keV to 20 MeV.

ner, Block, Davletshin, Kazakov, and Poenitz below 3
MeV, indicating that the (n,γ)/(n,n’) competition in the
discrete level region is handled reasonably. At higher
energies, however, the calculation is about a factor of 2
higher than the Drake et al. and McDaniels et al. mea-
surements over the approximate energy range E

n
∼ 8-14

MeV.

4. Neutron emission spectra

The two major reactions that lead to neutron emission
spectra in the actinides are the (n,xn) and (n,ynf) reac-
tions, where x can be 1, 2, 3, or 4 and y can be 0, 1, 2,
3, or 4 for incident neutron energies up to 30 MeV. Neu-
trons from both sources are calculated for all isotopes.
The calculations are described in the sections below.

a. Neutrons from fission : Prompt fission neutron
spectra were calculated for the major actinides (235,238U
and 239Pu) using the Los Alamos model (LAM) devel-
oped by Madland and Nix [83]. The fission neutron
spectra for the remaining actinides utilize Maxwell dis-
tributions with parameterizations obtained from various
sources or, in the case of 233U, an energy-dependent Watt
spectrum.

The LAM is based upon classical nuclear evaporation
theory and utilizes an isospin-dependent optical potential
for the inverse process of compound nucleus formation
in neutron-rich fission fragments with energy-dependent
compound nucleus formation cross sections for inverse
processes. The model accounts for the physical effects
of (a) the motion of the fission fragments emitting the
neutrons, (b) the distribution of fission-fragment resid-
ual nuclear temperature that results from the initial dis-
tribution of fission-fragment excitation energy, (c) the
energy dependence of the cross section for the inverse
process of compound-nucleus formation, and (d) the ef-
fects of and competition between first-, second-, third-,
and fourth-chance fission, wherein the neutrons emitted
prior to fission in multi-chance fission are included in the
total prompt fission neutron spectrum [1], [83].

Semi-direct (preequilibrium) reactions are not cur-
rently included in the LAM. We believe the best way to
incorporate such reactions is to use a Hauser-Feshbach
approach in calculating the spectrum, which would guar-
antee the conservation of scattering flux. However, a full
Hauser-Feshbach approach requires that the partition of
the fissioning compound nucleus excitation energy into
the light and heavy fragments be done in a physically
correct manner, which has yet to be accomplished. Once
that is done, however, the Hauser-Feshbach approach will
also allow more reliable calculation of (n,ynf) reactions.
Currently, the “yn” neutrons for (n,ynf) reactions from
the LAM are evaporation spectra calculated at the av-
erage excitation energies of each successive fissioning nu-
cleus in multi-channel fission at each incident neutron
energy.

The exact formulation of the LAM was utilized for
235,238U and 239Pu. The lowest incident neutron en-
ergy for a measured fission cross section for n+238U is
just under 2 eV with a value of about 5 microbarns.
Both 233,235U and 239Pu undergo fission at thermal neu-
tron energies, so the prompt fission spectrum calculations
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What has been done
Significant progress in recent years, but work remains to be done
• Significant progress in improving reaction framework

• Nuclear structure: phenomenological models complemented 
by microscopic theories (e.g. E1 strength, level densities)

• Reaction mechanisms are being revisited (e.g. pre-
equilibrium)

• Limited use of AI/ML tools so far

• Significant progress in quantifying uncertainties
• From fitting visually to minimizing c2 to Bayesian approaches
• Importance of covariances is recognized
• Use of AI/ML techniques just starting

• Predictions - extrapolations are problematic
• Models are extrapolated to regions where they have not 

been validated
• ML techniques useful for improving microscopic theories 

(e.g. mass models)

Experiments
Compilations

Evaluations
Processing Validation Applications

Daoutidis
(2012)

Microscopic calculation (CRPA)

Phenomenological E1 gSF

Capote (2009)



Future
Vision: Building robust science-based evaluations and establishing 
guidance for next-generation reaction theories 

• Develop evaluation tools to handle complex connections 
between models and their relations to observables
• Allow for optimization across multiple reaction channels and sets of 

isotopes
• Utilize direct and indirect data, plus theoretical constraints
• Implement modular structure to allow for replacing outdated nuclear 

models

• Provide guidance to nuclear theory
• Critically examine physics models and identify shortcomings
• Assign uncertainties to models

• Identify experiments to most effectively constrain theory

Experiments
Compilations

Evaluations
Processing Validation Applications

A. Arcones et al. / Progress in Particle and Nuclear Physics 94 (2017) 1–67 9

Fig. 2. Schematic outline of the various nuclear reaction sequences in astrophysical environments (colored lines) on the chart of nuclides. Stable isotopes
are marked as black squares. A broad range of nuclei are produced in astrophysical environments. The FRIB radioactive beam facility will provide access
to the unstable nuclei that participate in many astrophysical processes, most of which have never been observed in a laboratory. Stable, gamma, and
neutron beam facilities are needed to measure reactions with stable nuclei in stellar burning and the s-process. Note that many of these processes such
as the ⌫p-process, supernova core processes, and neutron star processes have only been identified in the last decade and are not well understood. The
recently discovered i-process operates parallel to the s-process a few mass units towards the neutron rich side and is not yet included in this figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Figure from Frank Timmes.

s-process nuclei serve as seeds for the p-process, the nucleosynthetic outcome of the p-process. Of similar importance are
the neutron capture rates on abundant nuclides that absorb neutrons, so called neutron poisons. During advanced burning
stages and during explosive nuclear burning triggered by the shock wave passing through the star when it explodes as a
supernova, proton, neutron, and ↵ induced reactions on heavier stable and unstable nuclei become important.

Masses, �-decay properties, and neutron capture rates on hundreds of unstable nuclei are critical for modeling various
r-processes and the i-process. In the case of the r-process, the nuclei are very far from stability (see Fig. 4) and many have
not yet been produced in laboratories to date. Nevertheless, progress has been made. A wide range of mass measurements
for increasingly unstable nuclei have been successfully carried out using time-of-flight and Penning trap techniques. �-
decay measurements now reach beyond the N = 50 shell in the Ga–Ge region covering the beginning of the r-process, and
similarmeasurements at RIKEN are now verging on the r-processwaiting points in the Rb–Zr region. FRIBwill be essential in
expanding the reach of r-process experiments to cover a significant portion of the r-process path (see Section 3.2). Neutrino
interactions play an important role in the r-process and can also produce some rare isotopes in the so called ⌫-process.

For the recently discovered i-process, a neutron capture process with time scales intermediate to the s- and r-process,
the critical nuclei are close to stability. However, accurate neutron capture rates are needed, which are very difficult to
determine experimentally for unstable nuclei. Techniques to carry out such measurements, such as the surrogate approach
using (d, p) and other transfer reactions, are critical. Pioneering measurements have been carried out, for example in the
132Sn region. Promising progress has also been made in utilizing inverse photodissociation or Coulomb breakup processes
as in the case of 60Fe, but all these techniques need to be developed further through experimental and theoretical work.
�-decay, proton capture, (p, ↵), and (n, p) reactions on unstable neutron-deficient nuclei need to be understood for models
of the ⌫p-process as well as nucleosynthesis in nova explosions.

p-process models require reliable (� , n), (� , p), and (� , ↵) reactions on 100s of stable and unstable neutron-deficient
nuclei. The need for experimental data is underlined by findings of large discrepancies between statistical model predictions
and measurements of reactions that involve ↵-particles. Measurements can be performed with � -beams (see Section 3.1)
or, taking advantage of quasi-virtual photons, via Coulomb breakup. However, in many cases, a measurement of the inverse
particle induced capture reaction, and the application of time-reversal invariance, is preferable and is currently a standard
tool for p-process studies. Currently the community worldwide is developing techniques to measure the relevant capture
reactions using radioactive targets or beams. The ReA3 facility at the NSCL and later at FRIB is ideal for such measurements
at astrophysical energies.

Nuclear theory is critical to complement experimental information (see Section 3.6). Even with new facilities expected
to fill in much of the missing information in the coming decade or two, theory is needed to reliably predict properties

Reaction calculations for astrophysics require extrapolations
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thickness was assumed in apportioning the nickel
between external and internal surfaces. Lack of
planeness, however, was assumed to introduce an average
0.001 -in. gap between each of the three principal pairs
of internal surfaces.

Average densities were established by adjusting
measured materiaI densities to allow for the nominal
volume of internal nickel coating and voids. Voids
remaining after correction for internal nickel were
redistributed uniformly (with compensating surface-mass
adjustment, Ref. 3) so that values of average density
were retained.*

*A restate m e nt of the inverse-square relationship between
density and critical mass is that a given mass increment is three
times as effective when distributed uniformly as it is when added
to the surface.

As shown in Figs. 6, 7, and 8, the three Jezebel
systems differed somewhat in shape, which led to
different corrections for asphericity. Further, aluminum
adapters re uired to fit the thin steel clamps (Fig. 5) to
the small !2 s u p arts a d d e d to the incidental reflection

for that assembly. Otherwise, corrections were similar.
Captions of Figs. 6, 7, and 8 give the critical or

slightly subcritical Jezebel configurations from which
critical masses are derived. Also shown are
corresponding masses corrected for the fiiling of major
voids left by missing mass-adjustment plugs or glory-hole
inserts, and by retracted control rod. These corrections
rely upon calibrations of the control rod and plugs.

The further corrections for asphericit y, nickel
coating, incidental reflection by clamps and
surroundings, homogenization, etc., are listed in Table I.
The resulting critical masses apply to isolated bare
spheres of uniform plutonium or uranium.

5
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Nuclear data application area
• Nuclear data validation 

relies on expert judgment to 
identify where are errors in 
nuclear data responsible for 
a difference in simulated 
versus experimental values of 
validation measurements.

• 1000s of nuclear data are 
used to simulate 1(!) 
validation experimental 
value. A human brain cannot 
keep track of all these inter-
dependencies.

Experiments
Compilations

Evaluations
Processing Validation Applications

Neutron Data Standards . . . NUCLEAR DATA SHEETS A.D. Carlson et al.

V. TABULAR DATA FOR THE NEUTRON
STANDARDS

Tabular data for each of the cross section standards and
the additional cross sections obtained in the cross section
standards evaluation process are given in the Tables XII–
XX. For all the evaluations other than those for the light
element standards, the tabular output is directly from
GMAP. For the 6Li(n,t), 10B(n,α) and 10B(n,α1γ) cross
sections the GMAP output was fitted with EDA code as
described in Sec. A. The tables for those cross sections
were provided as point-wise values from EDA. The H(n,n)
and C(n,n) cross sections had been evaluated using EDA
and the tables are direct output from EDA as point-wise
values.

The evaluation of the 252Cf PFNS obtained from
this work led to only very small changes in the spec-
trum obtained by Mannhart. It is recommended that
the Mannhart evaluation be used for any applications. It
is available at https://www-nds.iaea.org/standards/
ref-spectra/ together with the evaluated 235U ther-
mal prompt fission neutron spectrum. The reference fis-
sion cross sections for 209Bi(n,f), natPb(n,f), 235U(n,f),
238U(n,f) and 239Pu(n,f); and the prompt γ-ray pro-
duction reference Cross Sections for 7Li(n,n’γ) and
48Ti(n,n’γ) will be listed and updated on the site https:
//www-nds.iaea.org/standards/. As noted previously,
the 3He(n,p) cross section was not re-evaluated. The pub-
lication on the 2006 standards [1] contains the 3He(n,p)
evaluation.

The GMAP evaluation estimates a point-wise cross sec-
tion and its uncertainty at energy E using experimental
data in the energy range from E1 to E2. However, for
the 235U(n,f) cross section an integral from 7.8–11 eV
is produced with a node average energy 9.4 eV. The in-
terval corresponding to the node at 0.15 keV starts at
0.1 keV both for 235U(n,f) and 239Pu(n,f) cross sections.
From there on, all intervals are located half-way between
given GMA nodes. The results from 1 keV up to 150 keV
correspond to the average of low resolution experiments.
For the 238U(n,f) cross section below 2 MeV (below the
region where it is a standard) results with a denser grid
are marked by “x” and one corrected point is labelled
by “xx”. Smoothing has been applied for regions where
scatter of data needs to be removed since the standards
should be smooth. For all the tabular data, the values in
the standards energy region are recommended to be used
as standards for measurements. The fitted unsmoothed
values were included into the evaluated ENDF-B/VIII.0
general-purpose files in the standard region.

0.01 0.1 1 10 100

Cr
os

s 
Se
ct
io
n 
(b
)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
DS644, Li Jingwen, 1982 
DS620, I. Szabo, 1970 
DS621, I. Szabo, 1971 
DS622, I. Szabo, 1973 
DS611, 615, 616, 617
TUD/KRI, 1983-1985 
DS640, M. Davis, 1978 
DS521, K. Kari, 1978 
DS619, J. Perkin, 1965 
DS623, I. Szabo, 1976 
DS612, M. Cance, 1978 
DS672, W. Allen, 1957 
DS628, C. Uttley, 1956 
DS657, A. Moat, 1958 
DS589, D. Gayther, 1975, shape 
DS671, W. Allen, 1957, shape 
DS1038, Zhou Xian-Jian, 1982 
2006 Standard
2017 Standard

239Pu(n,f)

Incident Neutron Energy (MeV)

(a) 239Pu(n,f) experimental data from 4 keV up to 200 MeV.
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(b) 239Pu(n,f) to 235U(n,f) cross section ratio from 1 keV up to
200 MeV.
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FIG. 37. (Color online) Comparison of the 2017 and 2006
standards evaluations, together with experimental data for the
239Pu(n,f) cross section (a) and for the 239Pu(n,f) to 235U(n,f)
cross section ratio (b,c).
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What has been done
Random forests were used successfully to augment expert knowledge in pin-
pointing errors in  nuclear data and benchmark experiments leading to bias in 
simulating criticality benchmarks; E.g.: ML found 19F(n,inl) issue missed by experts
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Future
These ML techniques can be used for and enhance already now nuclear 
data validation. For more effective future use, one needs to address the 
major obstacle that several combinations of nuclear data lead to the 
same simulated criticality value -> no unique answer which nuclear data 
should be improved. We can resolve this in the future by:
• Using importance assessment metrics better suited for correlated input,
• Using comprehensive set of validation experiments: requires sensitivity 

tools to link nuclear data and simulations, benchmark quality validation 
experiments beyond criticality and ML algorithms able to handle those.
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Nuclear data application area
• Develop and refine advanced tools and a build a framework that 

enables optimized design of new benchmark experiments for 
validation of predictive simulations.
• What is the “ideal critical experiment” to support a given application?
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What has been done
• Critical experiment design history:
• Initially only expert-judgement was used (1940s).
• Simulations (largely Monte Carlo) were used to aid in experiment design 

(1950s-2000s)
• Cross-section sensitivities introduced in SCALE and MCNP (2000s)
• Now AI/ML is being utilized in critical experiment design:

• LLNL OPTIMUS
• LANL Bayesian optimization
• ARCHIMEDES uses Gaussian process optimization
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Future
• EUCLID (Experiments Underpinned by Computational Learning for 

Improvements in nuclear Data) aims to utilize advancements from 
ARCHIMEDES and the Nuclear Data Machine Learning projects.
• Optimization includes several parameters (not just ck).
• Focus is not a single experiment/measurement but how to combine 

multiple configurations and methods to maximize nuclear data 
impact.

Experiments
Compilations
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Processing Validation Applications

Spherical and cylindrical geometries.
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What type of problem can this solve?
§ Framework: nuclear density functional theory (DFT) for fission
§ Ingredients needed to compute fission fragment distributions

• Potential energy surfaces (PES) in some collective space
• Time-dependent dynamics (classical or quantum)

§ Depend on energy density functional – calibrated on experimental data
§ Propagate uncertainties from energy functional to fission fragment 

distributions
• Start with building emulator of 1D fission paths from ground-state to scission 
• Build posterior by conditioning on values of “experimental” barriers
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How does the method work?
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Training
Perform DFT calculations of 
fission path from ground-state 
to scission

Posterior
Compute posterior distribution 
of EDF parameters based on 
fission barriers

Energy curveScission Point

Emulator
Build local emulator with 
Gaussian processes



What is needed to use these tools?
§ Supervised learning for theoretical models

• Data is set of theoretical calculations
• Computationally expensive (hours on 

supercomputers)

§ Outlook
• Expand concept to values of mean field on 

spatial lattice
• High-precision irrelevant: use emulator as 

starting point to speed up calculations of large 
potential energy surfaces
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Original

Emulated
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C.M. Bishop, Neural Computing Research Group Report NCRG/94/004 (1994) 

What type of problem can this solve?
Mixture Density Network (MDN)
Can describe probabilistic data/observables
Used in cases where the input to output mapping 
is not one-to-one (e.g. systems where a single 
input can have multiple outputs – applications to 
synthesizing speech, financial risk analysis, etc.)

We have been exploring the MDN to emulate 
fission observables (fission yields) 



How does the method work?
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f(x) = ↵1N (µ1,�1) + ↵2N (µ2,�2) + ...+ ↵nN (µn,�n)
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y = f(x)
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Input à output

Standard neural 
network

Figure: https://hackernoon.com/artificial-neural-network-a843ff870338

In the Mixture Density Network, neural network learns the Gaussian variables 
instead of the mapping between x and y directly

252Cf(sf)
A=108



What is needed to use these tools?
• Data are needed with uncertainties

• Any type of data where the underlying distribution is believed to be or can 
be described as a probability distribution (e.g. experimental data where the 
errors are taken to be Gaussian)
• Multi-dimensional input and output can be handled
• Correlations between data points and uncertainties can be included

• Discrepant data sets do not have to be removed
• Noisy data can be included in the training
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Additional AI/ML Perspectives for Nuclear Data
Optimization algorithms for AI/ML

• Classical algorithms, e.g., stochastic gradient descent, Bayesian optimization, 
evolution strategy, trust region methods, show weakness in training complex 
AI/ML models. 

ØSGD does not work in large-batch training due to the loss of Stochasicity.

ØReinforcement learning cannot use automatic differentiation (AD), so gradient-free (black-
box) optimization algorithms are needed.

ØBesides AD, most algorithms do not work well in very high-dimensional spaces.

• Heuristics used in ML/AI training significantly prohibits reproducibility, such 
that a lot of “new” ML/AI models/methods can not be verified. 



Additional AI/ML Perspectives for Nuclear Data
Optimization algorithms for AI/ML

• Training ML/AI with physical constraints
ØMost existing ML/AI training algorithms are non-constraint optimization, but ML/AI 

problems related to nuclear data may require either hard or soft constraints.

ØSoft constraints could be handled by adding regularization terms to the loss function, but 
hard constraints are generally difficult to handle. 

• Generalization gap 
ØSince the loss function only involves training data, the global optimum of the loss function 

may not be a good choice for your ML/AI model.

Ø If the training data can fully represent the entire population, global optimum is the best. 
Otherwise, a local minimum with small curvature is preferred. 



Additional AI/ML Perspectives for Nuclear Data
Surrogate modeling 
• Dimensionality reduction (DR) in both input and output spaces.

ØNuclear simulators are usually very time-consuming, so it is unaffordable to generate large 
amount of training data.

ØReducing the input and output dimensions can significantly improve the accuracy of 
surrogates using limited amount of data. 

ØLinear DR methods: active subspaces, inverse regression, Nonlinear DR: reversible NNs

• Multi-fidelity surrogates
ØUse low-fidelity nuclear simulators to generate a lot of training data and use high-fidelity 

simulators to improve the accuracy in predictions. 



Additional AI/ML Perspectives for Nuclear Data
Stability and Robustness of AI/ML prediction

• Stability means the sensitivity of ML model output with respect to small 
perturbations of inputs

ØDeep NNs may have stability issue when viewing them as dynamical systems, i.e. ODEs

ØPossible strategies include implicit neural networks, reversible networks

• Robustness means the ML can alleviate the influence of adversarial attacks

Ø Intentionally or non-intentionally generated or crafted data to hurt the predictability of 
deep neural networks, e.g., mis-classification. 
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Building a Long-Range AI/ML Vision
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Needed Groundwork
• What common community tools are 

needed?
• Modernizing/documenting tools
• Improving ease of access
• TALYS is a great example.

• Modernizing and open sourcing 
common codes
• Cleaning up experimental data bases
• EXFOR

Pitfalls to be avoided
• Need to enforce reproducibility 

through peer review
• ML models represented and 

distributed in a standard format.

• Want to augment missing physics
• Favor better physics models over more 

complex ML.
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• Can we mitigate human error in 
compilation?

• Can we use ML to identify/quantify 
missing systematic errors?
• Can we “learn” how to correct them?

• Using ML to prioritize new measurements

• Validating old data

Future
• Batch effect mitigation or removal tools to be used by AI/ML
• Such tools / algorithms could be AI/ML methods
• Developed such algorithms for material science and bio-medical domain

• A fully automated NLP pipeline with reviewer user interface

Experiments
Compilations

Evaluations
Processing Validation Applications

• NLP can not be 100% accuracy and 
requires human validation
• Intuitive user interface is required 

for expert validation
• Automation can significantly reduce 

manual data extraction burden
• Table and Figure extraction from PDF

Yoo
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• Emulation of complex and expensive 
model codes
• Learning model defects

• Correcting them?
• How can we enhance evaluations with 

more fundamental but less precise 
models?
• Can reinforcement learning pick better a 

sets of models?
• Can we “learn” the intuition behind past 

evaluations
• Codification of senior evaluator intuition.

• Can we apply these ideas/tools to 
structure evaluations

Original

Emulated

N. Schunk
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• How can we gauge the correctness of 
evaluations and models?
• Does “correctness” have context?
• What about where there is no data?

• Very unstable systems 
• r-process

• Can we optimize new experiments to 
maximize new information gained?
• Can we automatic the consistency 

checking between models and measure 
data?

What has been done
Random forests were used successfully to augment expert knowledge in pin-
pointing errors in  nuclear data and benchmark experiments leading to bias in 
simulating criticality benchmarks; E.g.: ML found 19F(n,inl) issue missed by experts
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• Connect the (unexpectedly) important 
features of a reaction to particular 
application.

• Building application model surrogates 
for uncertainty propagation. 

• How do we fill in gaps of missing 
information needed by applications

Hutchinson

66Zn (n, 2n)
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Deep Q Learning

Bayesian Optimization
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Validation Denise Neudecker Jesson Hutchinson Questions / Discussion
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Closing Plenary Guannan Zhang Questions / Discussion

Break

Part II: Moderated Discussion

Discussion Lead Kyle Wendt

Moderated Discussion All

Summary Session Organizers
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